dWS

Overview of EKS Security

Manel Mendoza Flores
AWS Solution Architect.

Agenda

@ AWS Shared Responsibility Model
@ Container Security Best Practices

@ Amazon EKS Security Best Practices

adWws

\/‘7

EKS Shared Responsibility Modé??

%@5
~_

Responsibility for security and compliance is shared

Customers are
responsible for
their security and
compliance IN the

Customer

Foundation Services
AWS is

responsible for
the security OF
the Cloud

AWS

CAA)

© 2021, Amazon Web Services, Inc. or its Affiliates.
N

EKS with Self-Managed Workers

Customer data

Container images, source code, IAM

o w n
B o wn = (=
= = | =2 £ 2 2 S G
o 5 @ c > T = =9 =] o
a c T 5.8 25 = o
c n e T = O 'S S <
m o Q= o
Jg ‘3 g = - Vo wn o i) s
= e o A 3
b =] ()] +
$ 3 GE £ S3 3* 58 ¢
= o o

EKS cluster configuration

Worker node scaling VPC configuration

OS, kubelet, CRI and AMI configuration*

- Customer responsibility

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Controller
manager

Scheduler

Kubernetes
control
plane

- AWS responsibility

aws
~—

EKS with Managed Node Group

Customer data

Container images, source code, IAM

o w n
B o wn = (=
= = | =2 £ 2 2 S G
o 5 @ c > T = =9 =] o
a c T 5.8 25 = o
c n e T = O 'S S <
m o Q= o
Jg ‘3 g = - Vo wn o i) s
= e o A 3
b =] ()] +
$ 3 GE £ S3 3* 58 ¢
= o o

EKS cluster configuration

Worker node scaling VPC configuration

OS, kubelet, CRI and AMI configuration*

- Customer responsibility

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Controller
manager

Scheduler

Kubernetes
control
plane

- AWS responsibility

aws
~—

EKS with Fargate

Customer data

Container images, source code, IAM

Network Policies
RBAC Bindings
Quotas and
Limit Ranges
HPA and VPA
QoS and
Pod Priority
Pod Security
Policies
Pod Disruption
Budgets
Cluster Addons

EKS cluster configuration

Worker node scaling VPC configuration

OS, kubelet, CRI and AMI configuration*

- Customer responsibility

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Controller
manager

Scheduler

Kubernetes
control
plane

- AWS responsibility

aws
~—

mazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

. Amazon EKS Security Best Practices

adWws

\./7

Container Security

Defense in Depth

Full-blown distribution
Amazon Linux 2 (AL2) vs.
container-optimized distribution
Multi-tenancy requirements
Gotchas: Linux packages /
CVEs, leaks, GDPR (in Europe)

Container

Code analysis Dependencies
Source available?
Gotchas: huge surface,

many languages Source code

Configuration

Sanitizing user input
Static code analysis

Gotcha: log-leaking User data

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Runtime / standards (OCl)
Immutability of images

All containers share a kernel
(mitigation: Firecracker)
Gotchas: unnecessary privileged
users, no scans, trust

Sensitive configuration
(passwords, API keys, etc.)
Gotchas: commits-to-source,
non-separated access (dev. has
cleartext password)

o Business core data

« Personally identifiable
information (PII)

« Gotchas: leaks, General
Data Protection Regulation
(GDPR (in Europe))

adWws

\./‘7 11

Amazon Elastic Container Registry (ECR)

* Fully-managed, OCI Compliant, container registry

Tag immutability

Image scanning (uses open-source Clair)
Lifecycle management of images using policies
Accessible over VPC interface endpoints
Access control using IAM policies

Cross-region replication

adWws

\/‘7

IAM & Kubernetes RBAC Integration

%@5
~_

Kubernetss RBAC - Role & RoleBinding

» Access granted by Role and RoleBinding is limited to a namespace

RoleBinding Role
name: dev-role-binding ——————— name: dev-role
namespace: dev namespace: dev

all operations - Pod
all operations - Deployment
get, list - ConfigMap

Resources Verbs
(API Objects) (API Operations)

User* - jdoe

Group* - developers Pod create
- . Deployment list
ServiceAccount - webservice ;
ConfigMap update
Role delete
Namespace aWS

\/‘7

Managing Authentication via IAM

User authenticates to AWS I AR B L AWS IAM Role is mapped to
role based on access Kubernetes RBAC users/roles
\
g m &= I EKS-Developer >
ﬁlﬂ IAM Role has no
IAM permissions in
AWS
J
aWs

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

\./‘7

Managing Authentication via IAM

User authenticates to AWS I AR B L AWS IAM Role is mapped to
role based on access Kubernetes RBAC users/roles
\
g m &= I EKS-Developer >
ﬁlﬂ Kubernetes RBAC
1AM Group: developers
J

adWws

\./‘7

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

25

Integration of Kubernetes RBAC & AWS IAM

* Securely authenticate users via well-known IAM methods
* Map IAM users and roles to Kubernetes subjects using aws-auth ConfigMap

* Manage access control within EKS cluster using Kubernetes RBAC

apiVersion: vl
kind: ConfigMap
metadata:
name: aws—auth
namespace: kube-system
data:

mapRoles: |
— rolearn: arn:aws:iam::123456789012: role/EKS—WorkerNode-InstanceRole

username: system:node:{{EC2PrivateDNSName}}

groups: ['system:bootstrappers', 'system:nodes']
- rolearn: arn:aws:iam::123456789012:role/EKS-Developer—Role ¢--------------- ~-- 1AM Role

groups: [developers] M --- Kubernetes Group

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark
: , "

28

Managing Authorization via Kubernetes RBAC

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: RoleBinding
metadata:
name: developers-role-binding
namespace: dev
roleRef:

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: Role
WS ELENEH

apiGroup: rbac.authorization.k8s.io
subjects:

apiGroup: rbac.authorization.k8s.io

Kubernetes Users/Groups are mapped to

Kubernetes Roles using RoleBindings

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

»
>

rules:

- apiGroups:

— apps

batch
extensions
rbac.authorization.k8s.io
resources: ["x"]
verbs:

- get

- list

- watch
create
update
patch
delete

aws
N

29

IAM Authentication to EKS

8&%

l 2. Passes Auth token
lg

»

kubectl get pods

5. K8s action allowed/denied

<«

1. Get Auth token

[iam-authenticator]

Kubernetes API

|

[
»

3. Verifies Auth token

<
<

: 4. Authorizes AWS Identity with K8s RBAC

IAM credentials

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

AWS Identity and
Access Management

CAA)

V

34

Best Practices with IAM Roles for EKS

« Maintain clear separation between IAM roles used for different tasks in an EKS cluster
* Role for EKS cluster creation
« EKS cluster role (passed to EKS service at the time of cluster creation)
* Roles for Kubernetes service accounts
* Roles for authenticating clients access to EKS cluster

« Employ principle of least privileges

adWs

\/‘7

Logging

adWws
>

Kubernetes control plane APl and audit logs

Kubernetes control plane APl — HTTP API to and the state of API objects in Kubernetes
* Pods, namespaces, ConfigMaps, events

Audit logs provide information on API interactions
* What happened?

Cloud
i Controller
* When did it happen? Scheduler Cl\gg;clgcaléerr

 Who initiated it?

« On what did it happen?
 Endpoints, pods, ConfigMap, and so on [e==) API Server
 Where was it observed? Kubectl

* From where was it initiated?
« To where was it going?

aws

\/‘7

Analyze Control Plane Logs

| %
i i Amazon EKS _|—> Q‘? < v
1 \ ()

CloudWatch Log Insights
Amazon CloudWatch

S Ve |

« Audit and diagnostic logs from EKS control plane
« Analyze logs to monitor cluster and identify security threats

e o —————— o ——————— - — - - -

adWws

\./7 39

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

Audit EKS API calls with CloudTrail

* API requests to the cluster
* Cluster access via the Kubernetes API
« Authentication requests into the cluster

adWws

\./7

Amazon GuardDuty

(

Amazon GuardDuty
A threat detection service
that continuously monitors
for compromised accounts,
anomalous behavior,
and malware

56

Activate GuardDuty
With a few clicks in the
console, monitor all your
AWS accounts without
additional software to
deploy or manage

@ Amazon S3

Lﬁi‘ Container
workloads

ﬂ Instance workloads

% Accounts and users

Continuously analyze
Automatically and
continuously monitor AWS
workloads and resources for
potential threats at scale

%N

Intelligently detects
threats
GuardDuty uses machine
learning anomaly detection,
malware scanning, and
integrated threat intelligence
to identify and prioritize
potential threats

Al

Take action
Review detailed findings
in the console, integrate
into event management

or workflow systems,
and initiate AWS Lambda
for automated remediation
or prevention

GuardDuty Kubernetes finding types

Policy

Malicious access

Suspicious behavior

» Exposed dashboard

* Admin access to default
service account

» Anonymous access granted

Data discovery, exfiltration, or
modification from:

Tor

Successful anonymous
access

Malicious IPs

Execution in Kubernetes
system pod

Container with sensitive mount
Privilege container

GuardDuty immediately begins to analyze Kubernetes data sources from your Amazon EKS
clusters and monitors them for malicious and suspicious activity

GuardDuty aligns findings using the

MITRE ATT&CK framework

Credential access

Privilege escalation Policy

Defense evasion

Discovery Impact

Execution Persistence

dWsS
)

GuardDuty Kubernetes findings detail

Impact:Kubernetes/SuccessfulAnonymousAccess @ Q X
Finding ID: fac0ff89f930ecdfcce6b87bd1b24c3f Feedback

Kubernetes APl commonly used in Impact tactics was invoked on cluster detective-eks by the
anonymous user system:anonymous. Info

@ Investigate with Detective

Overview
HIGH
us-west-2

2

detective-eks [4
07-14-2022 16:38:26 (7 days ago)
07-14-2022 16:38:26 (7 days ago)

aWws
) —

Managing Secrets

adWws
>

Envelope Encryption for Kubernetes Secrets

1. Sends the Secret API Server
____________ >

_____________ >
(|] 2. API Generates DEK and encrypts
O K data locally. Then encrypts the oo_
— DEK with kms:Encrypt
Cmmm e - Eooooocooooos
kubectl create secret ... Kubernetes AWS Key Management
4. If someone reads the AP Service

secret, the API server
decrypts the secret with the
DEK and returns the secret

3. Kubernetes API persists the DEK
encrypted secret in ectd

O kubernetes-sigs/aws-encryption-provider
EAA

\/‘7

https://github.com/kubernetes-sigs/aws-encryption-provider
https://github.com/kubernetes-sigs/aws-encryption-provider

AWS Secrets Manager and Configuration Provider
(ASCP)

(¥) ASCP is a plugin for industry standard Kubernetes Secrets Store CSI Driver
(¥) Securely store and manage secrets in Secrets Manager or SSM Parameter Store

(¥) Make secrets accessible to Pods running on EKS
@ Mounted into the Pod file system as volume

@ Exposed as Kubernetes Secret resource

(¥) Limit and restrict secrets access to specific Pods with IAM policies using IRSA

adWws

\/‘7

Roles Assignments Service
Accounts

adWws
>

Securing Pod Access to AWS Services

AWS |dentity
and Access
Management
v
__________________________ N
X

AmazonEKSWorkerNodePolicy

m
Q AmazonEKS_CNI_Policy
§ AmazonEC2ContainerRegistryReadOnly
~+
% AmazonS3ReadonlyAccess
N

a’ a’ a’ [} AmazonDynamoDBFullAccess
o
§h AmazonMSKFullAccess
o
\ 4 w}
S3 DynamoDB Kafka
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark aWS’

48

Securing Pod Access to AWS Services

- AWS Identity
I%‘—' and Access
Management
v
____________________ N
X

AmazonEKSWorkerNodePolicy
AmazonEKS_CNI_Policy
AmazonEC2ContainerRegistryReadOnly

9]140.1d @dueisu| zd3

IRSA (IAM roles for
Service accounts)

v v

v v

X X
AmazonS3ReadonlyAccess AmazonDynamoDBFullAccess

S3 DynamoDB

aws
~—

Network Security

CAA)
0

Securing Pod to Pod Communications

) Security groups for pods

® Integrate EC2 security groups with Kubernetes pods

® Re-use operational knowledge, and tooling around existing security groups

& Network policies

® Implement network segmentation and tenant isolation

® Kubernetes native approach for traffic control

adWws

\/‘7

Securing Pods with EC2 Security Groups

Worker node and all its Pods share
the same security group(s) attached
to the primary ENI

VPC 10.0.0.0/24

eth1 ‘

10.0.11.76

Worker Node
10.0.11.205

adWws

\./7

Securing Pods with EC2 Security Groups

Worker node and all its Pods share
the same security group(s) attached
to the primary ENI

Assign each Pod to a dedicated ENI
with its own separate set of security

groups(s)

VPC 10.0.0.0/24

eth1 ‘

e
=

10.0.11.37

|

10.0.11.76

Worker Node
10.0.11.205

adWws

\./7

What is a Network Policy?

NetworkPolicy specifies how pods communicate with each other and other network endpoints.
Network policies define egress and ingress rules in order to secure network traffic
Network policies are implemented by the CNI plugin

* AWS VPC CNI plugin does not have a policy engine

* EKS clusters need a policy engine such as Calico to support network policies

Does not support controlling access to AWS resources outside the cluster

adWs

\/‘7

Network Policy Manifest

apiVersion: apps/vl apiVersion: vl
» Labels selectors used to identify pods and namespaces kind: Deployment kind: Namespace
metadata: metadata:
name: client name: client
namespace: client labels:
R spec: role: client
i replicas: 1
apiVersion: apps/vl i template:
kind: Deployment : netadata:
metadata: labels:

Client

role: client

name: frontend
namespace: stars

spec:

replicas: 1
template:

metadata:

apiVersion: apps/vl

labels: _
role: frontend Frontend Backend kind: Deployment
metadata:

name: backend
namespace: stars

spec:

replicas: 1
template:

metadata:

labels:

role: backend aWS
\./7

Network Policy: Deny All Rule

» NetworkPolicy to isolate all services from each other

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: default-deny
namespace: stars
spec:

Client
@ podSelector:
matchLabels: {}

(]

apiVersion: networking.k8s.io/v1l
Backend kind: NetworkPolicy
metadata:

name: default-deny

namespace: client

Frontend

spec:
podSelector:
matchLabels: {}

adWws

\./7

Network Policy: Ingress Rule

* NetworkPolicy to allow traffic to ingress into Backend pod from Frontend pod

* No effect on ingress traffic for Frontend and Client pods

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

namespace: stars
. name: backend-policy
Client specs
@ @ podSelector:

matchLabels:
role: backend
ingress:

= from:
Frontend > Backend — podSelector:
matchLabels:
role: frontend

ports:
- protocol: TCP
port: 6379

adWws

\./7

Network Policy: Ingress Rule

« NetworkPolicy to allow traffic to ingress into Frontend pod from client namespace

Frontend

Client

O

>

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
namespace: stars
name: frontend-policy
spec:
podSelector:
matchLabels:
role: frontend
ingress:
- from:
- namespaceSelector:
matchLabels:
role: client
ports:
- protocol: TCP
port: 8@

adWws

\./7

Network Policy: Egress Rule

« NetworkPolicy to allow traffic to egress to specific CIDR ranges

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:

namespace: stars

name: backend-policy
spec:

podSelector:
@ matchLabels:
role: backend

ingress:

Client

- from:
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: TCP
port: 6379

Frontend

> Backend

O

egress:
- to:
- ipBlock:
cidr: 10.0.0.0/24

[«)

adWws

\/‘7

Summary

» Apply security in depth.

» K8s users management integrated with AWS IAM, to improve identity
lifecycle.

« Uses IAM roles for service accounts applied to pods.

« Enable logging for all clusters.

« Enable Guarddutty for EKS and ECR containers scanning.

* Use AWS secret manager to improve

» Apply network security policies to isolate the namespaces / workloads.

adWs

\/‘7

Labs

« RBAC
« |RSA (IAM Role For Service Account)

 Network policies
 Security Groups 4 pods

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark

CAA)

v"

63

https://www.eksworkshop.com/beginner/090_rbac/
https://www.eksworkshop.com/beginner/110_irsa/
https://www.eksworkshop.com/beginner/120_network-policies/
https://www.eksworkshop.com/beginner/115_sg-per-pod/

dWS

Thank You

